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The vorticity distribution of the main flow is of importance for the nature of the 
laminar-turbulent transition (LTT). The presence of extrema (inflections in the mean ve- 
locity profile) induces specific singularities in both the laminar motion stability param- 
eters and in the structure of the turbulent domain being investigated. This is shown espe- 
cially clearly in the example of free shear flows [1-3]. 

The appearance of profile inflections in boundary layers can be caused by the geometry 
of the surface being streamlined, the action of large-scale incoming flow configurations, 
or the self-action of intense instability waves within the layer. In this latter case the 
occurrence of a singularity, as it is assumed, induces the development of a secondary high- 
frequency instability resulting in turbulization. The papers [3-9] are devoted to a study 
of these problems. The stability of model or secondary flows extracted from experiments was 
considered in [3, 7-9] within the framework of a linear inviscid approximation. In a more 
complete formulation (nonzero viscosity), computations are performed for examples of pre- 
separation boundary layers [4, 6]. A detailed investigation of the influence of a small de- 
formation (in the form of a localized jet) on the flow stability in a plane channel is per- 
formed in [I0]. 

However, the problem of seeking general dependences of the spectrum and structure for- 
mation of instable perturbations in a boundary layer on the location and degree of the in- 
flection remains open. Its solution for a range of Reynolds numbers and fluctuation wave 
spectra realized in typical LTT experiments is attempted in this paper. Within the frame- 
work of a linear locally parallel stability problem, the evolution of waves and fluctuation 
wave packets of a discrete and a continuous spectrum is considered during variation of the 
inflection parameters. The universality of regularities disclosed in the basis flow [ii] is 
established by comparison with typical profiles of other kinds. 

We represent the boundary layer velocity field in the local parallelism approximation 
in the form U = (U + guz, su2, Eu3) , where (U(y), 0, 0) corresponds to the main flow while 
e(uz, u2, u 3) is its perturbation. We select U = UG(Y) as basis [Ii], represented by the 
curve 2 in Fig. i. Such a profile simulates the motion of intense vortices in the layer and 
in the variables, which are dimensionless with respect to the thickness of the displacement 
and the incoming flow velocity, it is given by the dependence 

{ U _ + - ( t h y + O ,  Y < Y ~ ,  

v o =  y>y , (1) 

Y -- Yr Ro-1/~ ~ , 6 =  <<1, y~>>a. 

Here Re is the stream Reynolds number, Yr is the location of the inflection point, ~ and • 
characterize the zone width and the degree of profile deviation from the Blasius distribu- 
tion U B (curve i, Fig. i), U• are solutions of the boundary value problem 

a~w w a~v O, ~F = { ~ _ ,  ~ + ,  ~ } ,  U~ = a~" 
~ y 3  + 2 ay a--7-' 

o <~ u ~ u .  u_ = a ~_ / a u ,  ~_(o)  = u_(o) = o, 

u_ (y~) = uB(u~) - -  • y~ ~< y < oo, u+ = O,F+ lay, 
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~g, (~)  -- ~_ (~),  u ,  (y~) = u ~ ( ~ )  + • 

U+ -+ t for g--~ ~ .  
(2)  

Besides being of independent interest, the selection of U G as the basis profile is due 

to the simplicity of the dependence U G = U(y, Yr, • 5). 

The system of equations for the perturbations in a linear approximation takes the form 

OU Ou2 O~ 3u2 O, 
LO1)+ og o~ - -0 '  L(Au~) ay~ ox 

(~, u,)  = o (y = o), (~, ~,) + o (~,-,,- oo), 0~, ~,) = (,~o uo)  (t = o),  

L= +U az ~e' ~ << 

(3) 

(~ is the normal vortex component to the wall, and ~ is the characteristic scale of the lon- 
gitudinal perturbation change). 

The solution of (3) is representable by the integra ! 

- - o o  - - o o  

q- da ,t" d[?, ~ dkB(cz, f~,k)r +~z--~t) ,  
- -  a o  - - r e  - -  3 e  

(4) 

where j = i, 2, 3, A and B (~, B, k) are found from the initial conditions, >j, w = ~(~, 

~) = w + iw i are the eigenfunctions and values of the discrete spectrum of the Orr-Sommer- 
feld problem, and ~j(y, k), g(~, $, k) correspond to a continuous spectrum. 

We shall examine the stability of U G as a function of • Yr, Re. According to computa- 
tions for the Tollmien-Schlichting (TS) wave perturbations, the appearance of an inflection 
(• > 0) noticeably deforms the shape of ~j(y) and the spectrum of the fluctuations being 

magnified. The nature of the influence is substantially related to ~ and the location of 
the point Yr. It turns out that in a broad range of values of ~, 8, Re, corresponding to a 
linear instability domain of the undeformed flow, and interval of values Yr = Y e Z exists 
within which magnification of • contributes both to broadening of the unstable wave spectrum 
and to growth of the maximum of their increments. The location of the interval s and its 
dimensions vary with Re within 0.8 J y ~ 2.5, enclosing the neighborhood of the wave critical 
layer y = Yc z 1 but not reaching the outer layer boundary y z 5 (see Fig. i). It is essen- 
tial that for an inflection located outside the domain Z, magnification of z in this range 
of ~, Re results in suppression of the instability. However, stabilization for an inflection 
in the near-wall domain y < Z is not global in nature. As ~ grows, a shift of the instabil- 
ity zone occurs into the domain of HF vibrations without broadening of the interval ~. Per- 
turbation build-up for y > s is not observed up to 10 -3 ~ ~ 5 102 . This qualitatively dis- 
tinguishes the process in the boundary layer from free shear flows that are always being 
destabilized by growth of • [i, 2]. 

Dependences of the wave increments ei = wi(• for F = 57.5"10 -6 , Re = 625, ~ = 0 are 
presented in Fig. 2 for Yr = 0.5, 0.75, 1.25, 1.75, 3.0 (curves i-5, respectively). It is 
seen that the domain of the critical layer Yr z Yc is the boundary for Z: the increments 
drop for small • into the domain of negative values of ~i and grow monotonically for 
•215 The deflection in the zone s broadens the band of the unstable vibrations spectrum 
by shifting the maximally unstable vibrations into the high-frequency domain and touching 
the lower boundary slightly. The solid lines in Fig. 3 correspond to • = 0, Yr = i; • = 2%, 

Yr = l; x = 5%, Yr = 2; • = 2% for Re = 625, $ = 0. The quantities w m = w(Wim) and ~im = 
maxwwi(R) for • > 5% can exceed the corresponding values for ~ = 0 by more than an order. 
Acute focusing of ~j in the layer y z Yr is realized. Transformation of I@jl from the shape 

of the classical TS distribution through a two-hump structure to a sharp peak as • increases 
is shown in Fig. 4. The curves 1-4 are obtained for Re = 625, ~ = 0, ~ = 0.15 for ~ = 0, i, 
3, 15%. For • = const the frequency drop results in a certain flattening out of the [~iI 
peak, however, the domain of its localization remains invariant with respect to a change in 

47 



0,5- 

. . . / 4  I "~ 

o 2 4 

Fig. 1 

wt.70 s 

3 0 -  

15 

0 �84 

- 15 
0 

3 

4 

Fig. 2 

o)~ .1o 6 

r j 

I \ 

50j  1 \ 

? 
j i 

0 5 10 F. 104 2 4 y 

Fig. 3 Fig. 4 

w. Consequently, the neighborhood of Yr becomes a zone of intensive fluctuation concentra- 
tion of a broad spectrum band. At the same time, the change in • is felt weakly by the dis- 
persion TS dependence w = ~(~, ~). Despite the shift of I~iI from the zone of the critical 
layer Ye, the wave phase velocity c = w/~ remains close to the value UB(Yc). 

Therefore, local inflection changes • > 0 act substantially on the wave magnification 
velocity while its phase properties are determined by the boundary layer integral parameters. 
Let us note the influence of the degree of inflection ~ on the instability zone width in Re 
(wi(Re) > 0). Magnification of • (Yr = const) results in its extension. For • > 0 and Re 

wi + ~in(Yr, • w) (Win is the "inviscid" limit value). For the neutral stability curve 
Re(~) this denotes the emergence of the upper branch on the asymptote ~ ~ 0. The computa- 
tions results are represented in greater detail in [12]. In conformity with [i0], perturba- 
tions with ~ > 5 appear a property of the locality associated with the fact that outside a 
narrow neighborhood of Yc their amplitude drops abruptly to zero and remain invariant with 
respect to • for an inflection at Yr # Yc" In the range 300 ~ Re ~ 1500, 0.4 5 y ~ 4, x 
10% the vibrations instability is due entirely to the TS-mode. Appearance of additional un- 
stable modes were first detected for Re ~ 2500. 

Analysis of the stability of U G with respect to three-dimensional (8 # 0) perturbations 
qualitatively reproduces the dependences noted above: for x > 0 there is a domain Yr e 
within which the eigenfunctions ~j are localized at Yr, and the unstable vibrations spectrum 

is broadened. An increase in the angles $ = tan -l ~/~ of wave front propagation for ~ = 
const lowers the magnification increment. As ~ grows, the spread in the values of E corre- 
sponding to the unstable waves is expanded somewhat. 

Focusing of the wideband wave motion in a narrow vertical layer y ~ Yr noted above 
makes the question of the collective effects of perturbation evolution important. Analysis 
of the evolution of spatially localized perturbations can be reduced to examination of an 
approximate set of quasiharmonic packets. The solution of the problem here is to construct 
an asymptotic of the integral (4) for which a study of the relation w = ~(~, ~) is required 
over a field of complex ~, 8. Displacement of the path of integration of (4) from the real 
axes in the ~, ~ planes with the requirement of convergence and passage through the saddle 
point %, g0 (8w(%, ~0)/~a = x/t, 8w(~0, ~0)/8~ = z/t) taken into account results in repre- 
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sentation of the solution in the form 

uj (g, o)~ Re),~, (L/t)~j(g, ~o, ~o, Re) exp i(~ox-~ ~,,z- ~ot). (5) 

Application of the mentioned approach to U G disclosed that qualitative singularities of 
the group wave evolution remain analogous to those found for U B [13]. In particular, con- 
traction of the range of packet carrier frequencies that grow in the system xi = x - t 8~/ 
8~ (y = Im (~ - ~8~/8~)) with respect to the corresponding domains of unstable monochromatic 
vibrations occurs [the dashed lines 2-4 in Fig. 3; the computation parameters correspond to 
those used for monochromatic waves (solid lines 2-4)]. By virtue of the narrowness of the 
u-instability bands (y > 0) it can be expected that during evolution the wideband background 
perturbation is transformed into a wave tooth variable carrier frequency ~m = m(~im(Re)), 
Wim = maxwmi(Re) [13]. The singularity of the inflectional UG(y) for • > 0 is an increase 
in the values of mm, Ym and transformation of the tooth into a quasiharmonic packet as Re + 
~, when Ym + Yin and ~n § const as was noted above~ 

Commonality of the singularities detected for U G needs clarification. To this end, a 
flow generalizing to the case of arbitrary 6 ~Re -i/2, yr~6 and approximating the presepa- 
ration U S and K-transition (secondary) U K profiles (see lines 4 and 3 in Fig. i) was exam- 
ined. The last two distributions were constructed by a smooth deviation to the second de- 
rivative by polynomials of the initial profile UB(Y). The maximal magnitude of the deviation 

of the profiles under consideration from the distribution UB(Y) was here selected as the pa- 

rameter • (degree of inflection). It turns out that within the framework of the generalized 
U G of the flow the shift Yr + 0 (in the viscous sublayer domain) does not cause localization 
of the peak l~il in y = Yr" The flow is stabilized since Yr becomes below the layer ~. Ex- 
tension of the zone ~ for deflections Yr e ~ appears weakly in the spectrum characteristics 
but results in smoothing of the peak I~il in the neighborhood of Yr" 

The perturbation evolution properties detected in the U G flow are reproduced qualita- 
tively in the U K flow. A vertical layer ~ (0.8 ~ y ~ 3) exists within which the inflection 
(• > 0) results in broadening of the unstable fluctuation spectrum, and in its shifting to 
the domain of large ~, ~, ~i and focusing of I~il at Yr" 

The appearance of reverse flow domains in the stream (U S type profile) changes a number 
of the singularities remarked above. The presence of an inflection for Yr + 0 does not hin- 
der formation of the l~iI peak near the wall more while the spectrum of unstable fluctuations 
is shifted weakly into the domain of large w, ~. The computations performed agree with the 
data in [4, 6]. Therefore, universality of the transition effects detected during analysis 
of U G turns out to be limited by the requirement of monotonicity of the U(y) profile. Such 
conditions are typical in boundary layers on a flat plate where, therefore, the formation of 
an inflection in the interval Yr e ~ should contribute to accelerated emergence in the turbu- 
lent mode because of broadening of the frequency-wave spectrum and the fluctuation velocities~ 

In this context, confirmation is found for the idea of the secondary instability as a 
transition mechanism [7, 9]. In particular, generation of localized turbulence domain 
(spots) can be explained by the modulation of U K that causes wandering of the inflection pa- 
rameters (• Yr) = f(x, y, z, t) (such modulation actually holds [9]). Then the vertical 
focusing of the broadband fluctuations supplemented their (x, z, t) localization taken with 
the modulation velocity U K. 

The "projections" observable on oscillograms are associated with the development of 
this process during a K-transition [9]. However, our computations do not confirm such a re- 
lation since the domain for recording "projections" turns out to be above the boundary Yr e 

beyond which amplification does not occur. The deduction of the "non-secondary" nature of 
the flare-ups [14] finds a foundation. Nevertheless, the possibility of initiation of a 
transition because of the secondary instability mechanism (for Yr e ~) is quite probable. 

In conclusion, we examine the influence of the inflection on the continuous spectrum 
mode. The question of susceptibility of the boundary layer to perturbations in the incoming 
stream, particularly to continuous spectrum waves, remains open and it can be assumed that 
one of the mechanisms of action on the transition in the boundary layer is interaction of 
the mentioned and the TS modes. In the case of a Blasius flow such interaction turns out 
to be inefficient because of TS localization with the boundary layer, where the continuous 
spectrum fluctuations have practically zero amplitude. The interaction coefficients depen- 
dent on the product of amplitude functions turn out to be close to zero. 
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The appearance of an inflection in the mean velocity profile causes localization of 
the TS wave fluctuations at the height y ~ Yr, and in the case of an analogous focusing ac- 
tion on the continuous spectrum mode the appearance of a finite contribution to these coef- 
ficients could be expected. The dependence of continuous spectrum fluctuations of the linear 
problem [15] on • Yr, Re, ~, w for the profiles UG, US, U K was studied in this paper to ana- 
lyze the efficiency of the process. It turns out that localization of continuous spectrum 
fluctuations do not occur at the inflection point in the studied range of parameters (300 
Re ~ i000, • ! 10%, x K E 30%, Yr ! 4.5, 20"10 -6 5 F ~ 115"10-6). Dependences of the vor- 
ticity wave amplitude and phases (continuous and dashed lines, respectively) on y are repre- 
sented in Fig. 5 for the velocity profiles 1-3 for Re = 625, ~ = 0.17, UB; UG, • = 6%, Yr = 
3.5; UK, x = 30%, Yr ~ 3.5. Conversely, the first maximum of the wave as • grows is easily 

displaced into the outer domain of the layer. Only reconstruction of the transverse phase 
distribution ~ = arg ~I(Y) is noticeable in the inner domain. Such behavior (absence of am- 
plitude localization of different kinds of modes in the velocity profile inflection zone) 
apparently makes the proposed mechanism of external perturbation action inefficient. The 
appearance of inflections in the mean velocity profile is a source of transformation of the 
fluctuation evolution within the layer. 
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COMPUTING THE COMPRESSIBLE LAMINAR BOUNDARY LAYER ON A SHARP BODY 

OF BIELLIPTIC SECTION 

V. N. Vetlutskii D~C 532.526 

The problem of determining the parameters of a three-dimensional boundary layer is 
very pertinent, since its solution gives the distribution of friction and heat flux at the 
surface of the immersed body. From numerical solution of the full boundary layer equations 
we find the flow parameters: velocity components, temperature and density, from which one 
obtains new knowledge of the whole flow picture. 

Most papers on computing the laminar three-dimensional boundary layer deal with incom- 
pressible flow [1-5]. At supersonic speed of the incident flow it has been studied most 
frequently on blunt bodies (see, e.g., [6-9]). The three-dimensional compressible boundary 
layer on sharp bodies was examined in [10-13]. The angles of limiting stream lines computed 
in [i0] and the velocity profiles on a circular cone at angle of attack were compa1:ed with 
experiment in [ii]. The friction factor distributions were measured on ogive-cylindrical 
bodies in [12, 13]. 

The present paper describes a statement of the problem and computing algorit~hms for 
the compressible laminar boundary layer on a sharp body. Computed results are presented for 
a body of bielliptic cross section at Mach nmmber M~ = 2 and angles of attack ~ = 0-i0 ~ 
The evolution of the three-dimensional boundary layer with variation of angle of attack is 
described. 

i~ We consider flow over a sharp body of fuselage shape, immersed in a supersonic 
stream of gas of Mach number M~. The body has a plane of symmetry, which contains the veloc- 
ity vector of the incident flow. The vector makes the angle of attack ~ with a certain axis 
of the body. In this case the entire flow also has a plane of symmetry. 

The body surface is assumed to be smooth, and its equation is given in a cylindrical 
coordinate system r = r(~, ~). The coordinate g is reckoned from the body vertex along its 
axis, ~ is the meridional angle in the transverse section, and ~ = 0 corresponds to the wind- 
ward symmletry plane. The equations of the three-dimensional compressible laminar boundary 
layer have been written in the nonorthogonal coordinate system (~, q, ~), fixed in the body 
surface [14]. The coordinate q coincides with the local surface normal. 

The body nose is assumed to be conical. In that case the inviscid flow there is coni- 
cal, and the boundary layer equations have a similarity solution dependent on the variables 

~, i = ~/v~ [15]. Therefore in this paper, in addition to the coordinate q we introduce the 
variable %, and instead of the components of the velocity v directed along the normal to the 
body surface, we introduce the mass flux 

Here and below gik are the metric coefficients of the surface. Of course, with this substi- 
tution we can avoid the solution depending on the longitudinal coordinate ~ only on the con- 
ical nose. On the rest of the surface the dependence of the boundary layer thickness on $ 
in the new variable X will be weaker. 

We now write two equations of motion, the energy equation, and the continuity equation 
in the variables ($~ %, ~) in the following form [16]: 
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